Abstract
Food adulteration presents a significant challenge due to the evasion of legal oversight and the difficulty of identification. Addressing this issue, there is an urgent need for on-site, rapid, visually based small-scale equipment, along with large-scale screening technology, to enable prompt results without providing opportunities for dishonest traders to react. Colorimetric reactions offer advantages in terms of speed, visualization, and miniaturization. However, there is a scarcity of suitable colorimetric reactions for food adulteration detection, and interference from colored food impurities and easily comparable color results affects accuracy. To overcome limitations, this study introduces a novel approach utilizing polydopamine magnetic nanoparticles to enrich DNA in food samples, effectively eliminating interfering components. By employing gold nanoparticles to generate magnetic-gold nanoparticles, a single magnetic bead achieves simultaneous enrichment, impurity removal, and detection. The use of paper-based biosensors and visualization equipment allows for the visualization and digital analysis of results, achieving a low detection limit of 4.59 nmol mL−1. The method also exhibits high accuracy and repeatability, with a RSD ranging from 1.6 % to 4.0 %. This innovative colorimetric method addresses the need for rapid, miniaturized, and large-scale detection, thus providing a solution for food adulteration challenges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.