Abstract

We study Poincaré-Wirtinger type inequalities in the framework of magnetic fractional Sobolev spaces. In the local case, Lieb et al. (2003) [19] showed that, if a bounded domain Ω is the union of two disjoint sets Γ and Λ, then the Lp-norm of a function calculated on Ω is dominated by the sum of magnetic seminorms of the function, calculated on Γ and Λ separately. We show that the straightforward generalisation of their result to nonlocal setup does not hold true in general. We provide an alternative formulation of the problem for the nonlocal case. As an auxiliary result, we also show that the set of eigenvalues of the magnetic fractional Laplacian is discrete.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.