Abstract

We establish an affine invariant version of the sharp L2 Sobolev trace inequality which contains a recent result of De Nápoli et al. [9] as special case. We also give a notion of the so-called affine fractional energy for functions in the fractional homogeneous Sobolev space H˙s(Rn) for s∈(0,1) and n>2s. We investigate some properties of this affine fractional energy such as a representation formula and the affine fractional Pólya–Szegö principle. Finally, we obtain a sharp affine fractional L2 Sobolev inequality in the fractional homogeneous Sobolev space H˙s(Rn) for s∈(0,1) and n>2s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.