Abstract

Magnetic resonance electrical impedance tomography (MREIT) has been introduced as a non-invasive modality to visualize the internal conductivity and/or current density of an electrically conductive object by the injection of current. In order to measure a magnetic flux density signal in MREIT, the phase difference approach in an interleaved encoding scheme cancels the systematic artifacts accumulated in phase signals and also reduces the random noise effect. However, it is important to reduce scan duration maintaining spatial resolution and sufficient contrast, in order to allow for practical in vivo implementation of MREIT. The purpose of this paper is to develop a coupled partial Fourier strategy in the interleaved sampling in order to reduce the total imaging time for an MREIT acquisition, whilst maintaining an SNR of the measured magnetic flux density comparable to what is achieved with complete k-space data. The proposed method uses two key steps: one is to update the magnetic flux density by updating the complex densities using the partially interleaved k-space data and the other is to fill in the missing k-space data iteratively using the updated background field inhomogeneity and magnetic flux density data. Results from numerical simulations and animal experiments demonstrate that the proposed method reduces considerably the scanning time and provides resolution of the recovered Bz comparable to what is obtained from complete k-space data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call