Abstract

Cone beam CT is integral to most modern radiotherapy treatments. The application of daily and repeat CBCT imaging can lead to high imaging doses over a large volume of tissue that extends beyond the treatment site. Hence, it is important to ensure exposures are optimised to keep doses as low as reasonably achievable, whilst ensuring images are suitable for the clinical task. This IPEM topical report presents the results of the first UK survey of dose indices in radiotherapy CBCT. Dose measurements, as defined by the cone beam dose index (CBDIw), were collected along with protocol information for seven treatment sites. Where a range of optimised protocols were available in a centre, a sample of patient data demonstrating the variation in protocol use were requested. Protocol CBDIwvalues were determined from the average dosimetry data for each type of linear accelerator, and median CBDIwand scan length were calculated for each treatment site at each centre. Median CBDIwvalues were compared and summary statistics derived that enable the setting of national dose reference levels (DRLs). A total of 63 UK radiotherapy centres contributed data. The proposed CBDIwDRLs are; prostate 20.6 mGy, gynaecological 20.8 mGy, breast 5.0 mGy, 3D-lung 6.0 mGy, 4D-lung 11.8 mGy, brain 3.5 mGy and head/neck 4.2 mGy. However, large differences between models of imaging system were noted. Where centres had pro-active optimisation strategies in place, such as sized based protocols with selection criteria, dose reductions on the 'average' patient were possible compared with vendor defaults. Optimisation of scan length was noted in some clinical sites, with Elekta users tending to fit different collimators for prostate imaging (relatively short) compared with gynaecological treatments (longest). This contrasts with most Varian users who apply the default scan length in most cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.