Abstract

Negative differential conductivity (NDC) with a peak/valley ratio of 4.5:1 (4 K) and 2:1 (150 K) is observed in double barrier resonant tunnelling devices based on n-InP/(InGa)As. A transverse magnetic field applied in the plane of the tunnelling barriers ( J ¦ B ) significantly changes the current-voltage characteristics and eliminates the NDC for fields above −10 T. This behaviour is explained qualitatively in terms of the effect of the magnetic vector potential on the tunnelling electrons. The magneto-oscillations in the tunnelling current for J ‖ B are discussed in terms of a simple model of resonant tunnelling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.