Abstract
Severe bleeding in perforating and inflected wounds with forky cavities or fine voids encountered during prehospital treatments and surgical procedures is a complex challenge. Therefore, we present a novel hemostatic strategy based on magnetic field-mediated guidance. The biphasic Janus magnetic particle (MSS@Fe2O3-T) comprised aggregates of α-Fe2O3 nanoparticles (Fe2O3 NPs) as the motion actuator, negatively modified microporous starch (MSS) as the base hemostatic substrate, and thrombin as the loaded hemostatic drug. Before application, the particles were first wrapped using NaHCO3 and then doped with protonated tranexamic acid (TXA-NH3+), which ensured their high self-dispersibility in liquids. During application, the particles promptly self-diffused in blood by bubble propulsion and travelled to deep bleeding sites against reverse rushing blood flow under magnetic guidance. In vivo tests confirmed the superior hemostatic performance of the particles in perforating and inflected wounds (“V”-shaped femoral artery and “J”-shaped liver bleeding models). The present strategy, for the first time, extends the range of magnetically guided drug carriers to address the challenges in the hemorrhage control of perforating and inflected wounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.