Abstract
The impact of superimposed magnetic fields on the behavior of iron in 0.05 M H 2SO 4 at low anodic polarization was investigated by means of potentiostatic polarization measurements. Significant magnetic field effects were observed even though the active dissolution reaction in the investigated potential region is formally charge transfer controlled. The current density can be enhanced or reduced dependent on the magnetic field to electrode configuration. The results are discussed in terms of the magnetic field impact on the surface pH value during the anodic dissolution. Our findings are likely to have important consequences for the life-time prediction of ferromagnetic components in electromagnetic devices and for future studies on magneto-electrodeposition processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.