Abstract

The magnetic field effect on natural convection flow of power-law (PL) non-Newtonian fluid has been studied numerically using the multiple-relaxation-time (MRT) lattice Boltzmann method (LBM). A two-dimensional rectangular enclosure with differentially heated at two vertical sides has been considered for the computational domain. Numerical simulations have been conducted for different pertinent parameters such as Hartmann number, [Formula: see text], Rayleigh number, [Formula: see text], PL indices, [Formula: see text]–1.4, Prandtl number, [Formula: see text], to study the flow physics and heat transfer phenomena inside the rectangular enclosure of aspect-ratio [Formula: see text]. Numerical results show that the heat transfer rate, quantified by the average Nusselt number, is attenuated with increasing the magnetic field, i.e. the Hartmann number (Ha). However, the average Nusselt number is increased by increasing the Rayleigh number, [Formula: see text] and decreasing the PL index, [Formula: see text]. Besides, the generation of entropy for non-Newtonian fluid flow under the magnetic field effect has been investigated in this study. Results show that in the absence of a magnetic field, [Formula: see text], fluid friction and heat transfer irreversibilities, the total entropy generation decreases and increases with increasing [Formula: see text] and [Formula: see text], respectively. In the presence of the magnetic field, [Formula: see text], the fluid friction irreversibility tends to decrease with increasing both the shear-thinning and shear thickening effect. It is noteworthy that strengthening the magnetic field leads to pulling down the total entropy generation and its corresponding components. All simulations have been performed on the Graphical Processing Unit (GPU) using NVIDIA CUDA and employing the High-Performance Computing (HPC) facility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call