Abstract
We have studied the phase retardation of linearly polarized light in a hybrid nematic liquid crystal cell. For a certain range of directions of the applied magnetic field the phase retardation is found to change non-monotonically with the magnetic induction. The observed behaviour is described rather well by the standard Frank elastic theory. The corrections resulting from subsurface deformations, which are characteristic both for second order elasticity approach and for surface field theory, are also considered. The analysis of the experimental data suggests that the presence of distortions in the zero-field director configuration is the necessary condition for the non-monotonic phase retardation, which implies that such an experiment could be used for the detection of misalignment of the effective pretilts in a nematic cell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.