Abstract

The motor is an important component that affects the output performance of new energy vehicles (using new energy sources such as electric energy and hydrogen fuel energy to drive the motor and provide kinetic energy). Motors with high power and low noise can effectively improve the dynamic performance, passability and smoothness of new energy vehicles and bring a comfortable experience to driver and passengers. The magnetic field analytical model of the inner-mounted permanent magnet synchronous motor (IPMSM) is studied to improve its output quality. The motor is divided into four subdomains: the stator slot subdomain, the stator slot notch subdomain, the air-gap subdomain, and the permanent magnet (PM) subdomain. The general solution of the vector magnetic potential of each subdomain is solved, and the expression of magnetic flux density of each subdomain is derived. Meanwhile, the analytical model of the non-uniform air gap is established according to the uniform air-gap model. The model’s accuracy is verified by finite element analysis and prototype tests. The results show that the calculation results of the analytical model are effective. The model can be applied to predict the no-load back electromotive force (EMF) and cogging torque of the motor under different main air gaps. It also provides an effective and fast analysis method for the design and optimization of IPMSM for new energy vehicles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call