Abstract

Abstract Plasma streaming instabilities play an important role in magnetic field amplification and particle acceleration in relativistic shocks and their environments. However, in the far shock precursor region where accelerated particles constitute a highly relativistic and dilute beam, streaming instabilities typically become inefficient and operate at very small scales when compared to the gyroradii of the beam particles. We report on a plasma cavitation instability that is driven by dilute relativistic beams and can increase both the magnetic field strength and coherence scale by orders of magnitude to reach near-equipartition values with the beam energy density. This instability grows after the development of the Weibel instability and is associated with the asymmetric response of background leptons and ions to the beam current. The resulting net inductive electric field drives a strong energy asymmetry between positively and negatively charged beam species. Large-scale particle-in-cell simulations are used to verify analytical predictions for the growth and saturation level of the instability and indicate that it is robust over a wide range of conditions, including those associated with pair-loaded plasmas. These results can have important implications for the magnetization and structure of shocks in gamma-ray bursts, and more generally for magnetic field amplification and asymmetric scattering of relativistic charged particles in plasma astrophysical environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.