Abstract
The anisotropy of magnetic susceptibility (AMS) has great potential in deciphering weakly deformed fabrics that may be related to tectonic stress. Previous studies have suggested that magnetic lineation is a good indicator of paleostrain direction. It is unclear whether the magnetic fabric can also be used to indicate the present-day strain field. To verify this idea, we measured the AMS of freshly consolidated lacustrine fine-grained and horizontal-bedding sediments at 11 locations in the Qaidam and Chaka-Gonghe basins of the northeastern Tibetan Plateau and compared it with the present-day strain field deduced from the Global Position System (GPS) velocity field. The AMS of these sediments appears a weakly deformed fabric with clear foliation and lineation. The optical and scanning electron microscope (SEM) images of the thin sections show that the elongated particles display an orientation parallel or subparallel to the magnetic lineation direction, confirming the effectiveness of magnetic lineation. The magnetic lineations of both room-temperature and low-temperature AMS are roughly perpendicular to the GPS-derived tectonic shortening direction within the error range, suggesting that the AMS of freshly consolidated muds is an effective indicator of the present-day strain field, even if the sediments appear undeformed at the outcrop scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.