Abstract
AimsSilibinin offers potential anticancer effect with less aqueous solubility and high permeability. The present study aimed to develop biocompatible magnetic-core-based nanopolymeric carriers of poly (D, l-lactide-co-glycolic) acid (PLGA) encapsulated silibinin for the sustained release action on renal cancerous cell. Main methodsThe synthesized iron oxide nanoparticles were prepared by precipitation method via encapsulation of silibinin in PLGA network using double emulsion method. The nanoparticle formulations were characterized for morphological, physicochemical properties (HRTEM, FTIR, Raman Spectroscopy and VSM), in vitro drug release and cytotoxicity study on kidney cancer cells (A-498). The safety of magnetic-core-based silibinin nanopolymeric carriers was conducted by i.v. administration at a dose of 50 mg/kg in mice. Key findingsThe mean particle size, zeta potential and % encapsulation efficiency of magnetic-core-based silibinin nanopolymeric carriers were found to be 285.9 ± 0.28 nm, −14.71 ± 0.15 mV and 84.76 ± 1.29%, respectively. The saturation magnetization of magnetic core and optimized nanoparticles were reported as 36.35 emu/g and 12.78 emu/g, respectively. HRTEM analyses revealed the spherical shapes of the particles with uniform size distribution. The in vitro release profile of silibinin from the nanoparticles exhibited a sustained delivery for 15 days and displayed better cytotoxicity against human kidney cancer cells (A-498) than silibinin. In vivo study showed the safety of magnetic-core-based silibinin nanopolymeric carriers in mice. SignificanceThe magnetic-core-based silibinin nanopolymeric carriers will act as a potential carrier for targeted transportation of actives in cancer therapy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have