Abstract

Yttrium iron garnet (YIG) nanoparticles (NPs) doped with rare earth (RE) metal ions (Y2.5Sm0.5Fe5O12, Y2.5Nd0.5Fe5O12) were successfully synthesized by sol-gel auto combustion approach. The cubic crystalline structure and morphology of the prepared garnet ferrite NPs were analyzed by X-ray diffractometer (XRD) and field emission scanning electron microscopy (FESEM). The cubic crystalline garnet phase of the synthesized YIG, Sm-YIG and Nd-YIG samples was successfully achieved at 950 °C sintering temperature. The force constant and absorption bands were estimated by using Fourier transform infrared spectroscopy (FTIR). The doping effect of RE metal ions on the chemical states of YIG were examined by x-ray photoelectron microscopy (XPS). The valence band (from 12.63 eV to 13.22 eV), conduction band (from 10.89 eV to 11.34 eV) edges and optical bandgap values of RE doped YIG samples were calculated using UV–Vis spectroscopy and ultraviolet photo electron spectroscopy (UPS). The magnetic analysis of the prepared NPs was studied using vibrating sample magnetometer (VSM). The XPS analysis of RE doped YIG samples exhibit the existence of RE (Sm+3, Nd+3) contents on the surface of YIG ferrite by decreasing the oxygen lattice in garnet structure. The optical bandgap (from 1.74 eV to 1.88 eV) explains the semiconducting nature of the synthesized NPs. The UPS results confirm the valence band position of YIG doped samples. The saturation magnetization and remanence of RE doped garnet ferrite samples increased from 13.45 to 18.83 emu/g and 4.06–6.53 emu/g, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call