Abstract

A procedure is proposed for precise scanning of the (B ⊥, B ‖) plane between the magnetic field projections that are perpendicular and parallel to (quasi-)two-dimensional layers when measuring their longitudinal and Hall magnetoresistances. Investigations of a n-In x Ga1−x As/GaAs double quantum well (x ≈ 0.2) performed using this procedure make it possible to reveal a number of the features of the magnetoresistance, which appear due to a complex energy spectrum of the double quantum well in a parallel field, and to separate them from the structures associated with the magnetic breakdown. The trajectories representing the features of the magnetoresistance in the (B ⊥, B ‖) plane are described by the semiclassical calculations of the quantization of the energy spectrum of the double quantum well under the action of the perpendicular field component. The structures appearing due to the magnetic breakdown are amplified with increasing the total magnetic field magnitude and, in the samples with low mobility, completely suppress the features caused by the motion of an electron with a constant pseudospin component. The peaks corresponding to the magnetic breakdown are split in a strong parallel field due to the spin splitting of the Landau levels. These splittings correspond to the effective Lande factor |g*| ≈ 3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.