Abstract

R 2Fe 14B systems, with R = Gd, Tb, By, Ho and Er were hydrogenated to the composition R 2Fe 14BH x where x ranges from 3.7 to 5.4. The pressure-composition isotherms (PCIs) of the hydrides showed only a solid solution behavior. No plateau pressure region was observed between room temperature and 300° C and at pressures down to 10 -2 atm. The absorbed hydrogen leads to an increase of 2.6 to 3.4% in unit cell volume, without a change in crystal structure. Magnetic characteristics of the present compounds were investigated over the temperature range 4.2 to 1100 K and at applied field up to 20 kOe. Saturation magnetization, M s, and magnetic ordering temperature, T c, were enhanced upon hydrogenation. T c, is found to be dependent on the hydriding composition. Hydrogen induces a spin-reorientation effect (SR) in Gd- and Dy-containing compounds, while it has a marked influence in raising the spin-reorientation temperature, T SR, in the Er 2Fe 14B compound. The hydride involving Tb appears to remain uniaxial to the lowest temperature studied. In all cases the anisotropy fields, H A/' were significally reduced by hydrogen absorption. These varied magnetic behaviors can be ascribed to the effects: (1) variations in the interatomic distances, (2) strengthening the 3d-3d and weakening the 4f-3d exchange interactions and (3) the interstitial site occupations of hydrogen in the lattice. The spin-reorientation phenomena observed for Gd 2Fe 14BH x suggest that there is competition among the 6 Fe sublattices in regard to the sign and temperature coefficient of anisotropy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call