Abstract

Multiorbital Hubbard model Hamiltonians for the undoped parent compounds of the Fe-pnictide superconductors are investigated here using mean-field techniques. For a realistic four-orbital model, our results show the existence of an intermediate Hubbard $U$ coupling regime where the mean-field ground state has a $(\ensuremath{\pi},0)$ antiferromagnetic order, as in neutron-scattering experiments, while remaining metallic due to the phenomenon of band overlaps. The angle-resolved photoemission intensity and Fermi surface of this magnetic and metallic state are discussed. Other models are also investigated, including a two-orbital model where not only the mean-field technique can be used but also the exact diagonalization in small clusters and the variational cluster approximation in the bulk. The combined results of the three techniques point toward the existence of an intermediate-coupling magnetic and metallic state in the two-orbital model, similar to the intermediate-coupling mean-field state of the four-orbital model. We conclude that the state discussed here is compatible with the experimentally known properties of the undoped Fe pnictides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.