Abstract

In this paper, first-principles calculations have been performed in order to study the electronic and magnetic properties of the bulk and the (0 0 1) surface of Mn2Sn thin films using self-consistent ab initio calculations, based on the density functional theory approach and using the product of the muffin-tin radius and the maximum reciprocal space vector, RMT. Kmax, we full potential linear augmented plane wave methods. Spin-polarized calculations within the framework of density-functional theory are a powerful tool for describing the magnetism of itinerant electrons in solid state materials. The total and partial density of states of Mn2Sn thin films were calculated. The magnetic moments considered to lie along the c axes are computed. The data obtained from the ab initio calculations are used as an input for the high temperature series expansions calculations used to compute other magnetic parameters. The critical temperature and exchange interactions between the magnetic atoms in the Mn2Sn thin films are obtained using high temperature series expansions and mean field theory, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call