Abstract

Due to underlying symmetries the ground states of magnetic adatoms may be highly stable, which opens perspectives for application as single-atom memory. A specific example is a single holmium atom (with $J=8$) on a platinum (111) surface for which exceptionally long lifetimes were observed in recent scanning tunneling microscopy studies. For control and read-out the atom must be coupled to electronic contacts. Hence the spin dynamics of the system is governed by a quantum master equation. Our analysis shows that in general it cannot be reduced to a classical master equation in the basis of the unperturbed crystal-field Hamiltonian. Rather, depending on parameters and control fields, "environment induced superselection" principles choose the appropriate set of basis states, which in turn determines the specific relaxation channels and lifetimes. Our simulations suggest that in ideal situations the lifetimes should be even longer than observed in the experiment. We, therefore, investigate the influence of various perturbations. We also study the initialization process of the state of the Ho atom by applied voltage pulses and conclude that fast, high fidelity preparation, on a $100\,\text{ns}$ timescale, should be possible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.