Abstract

Quasi-Periodic Oscillations (QPOs) observed during Soft Gamma Repeaters giant flares are commonly interpreted as the torsional oscillations of magnetars. The oscillatory motion is influenced by the strong interaction between the shear modes of the crust and Alfven-like modes in the core. We study the dynamics which arises through this interaction, and present several new results: (1) We show that global {\it edge modes} frequently reside near the edges of the core Alfven continuum. (2) We compute the magnetar's oscillatory motion for realistic axisymmetric magnetic field configurations and core density profiles, but with a simplified model of the elastic crust. We show that one may generically get multiple gaps in the Alfven continuum. One obtains discrete global {\it gap modes} if the crustal frequencies belong to the gaps. (3) We show that field tangling in the core enhances the role of the core discrete Alfven modes and reduces the role of the core Alfven continuum in the overall oscillatory dynamics of the magnetar. (4) We demonstrate that the system displays transient and/or drifting QPOs when parts of the spectrum of the core Alfven modes contain discrete modes which are densely and regularly spaced in frequency. (5) We show that if the neutrons are coupled into the core Alfven motion, then the post-flare crustal motion is strongly damped and has a very weak amplitude. Thus magnetar QPOs give evidence that the proton and neutron components in the core are dynamically decoupled and that at least one of them is a quantum fluid. (6) We show that it is difficult to identify the high-frequency 625 Hz QPO as being due to the physical oscillatory mode of the magnetar, if the latter's fluid core consists of the standard proton-neutron-electron mixture and is magnetised to the same extent as the crust. (Abstract abridged)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call