Abstract

The aim of this study was to show whether the decrease in blood pressure induced by Mg supplementation in deoxycorticosterone acetate - salt (DOCA-salt) hypertensive rats is associated with mechanical modifications of blood vessels and (or) changes in tissular production and (or) vasoconstrictor activity to endothelin-1. DOCA-salt treatment increased blood pressure, media thickness, cross-sectional area, and lumen diameter of carotid arteries. Distensibility and incremental elastic modulus versus stress were not altered in carotid arteries, suggesting that the DOCA-salt vessel wall adapts structurally to preserve its blood pressure buffering capacity. Magnesium supplementation attenuated DOCA-salt hypertension. In comparison with normotensive rats, systolic, mean, and pulse pressures were higher whereas diastolic pressure was not different in Mg-supplemented DOCA-salt rats. Magnesium supplementation did not significantly modify the elastic parameters of carotid arteries. In resistance mesenteric arteries, DOCA-salt hypertension induces an inward hypertrophic remodeling. Magnesium supplementation attenuates wall hypertrophy and increases lumen diameter to the normotensive diameter, suggesting a decrease in peripheral resistance. Magnesium supplementation normalizes the altered vasoconstrictor activity of endothelin-1 in mesenteric arteries and attenuates endothelin-1 overproduction in kidney, left ventricle, and aorta of DOCA-salt rats. These findings suggest that Mg supplementation prevents blood pressure elevation by attenuating peripheral resistance and by decreasing hypertrophic effect of endothelin-1 via inhibition of endothelin-1 production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call