Abstract
Magnesium doping of GaN was found to generate extended defects with a pyramidal shape. Transmission electron micrographs of layers with different doping levels typically showed a defect-free region at the start of doping and a modulation of the defect density in the subsequent film. We developed a rate equation model based on the segregation of Mg to explain the formation process of these defects. The model explains the dependence of the defect-free thickness on the doping level and yields a criterion to avoid the defect formation. Hall measurements show a significant reduction of the free hole concentration for samples grown at doping levels beyond defect formation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have