Abstract

There is a growing interest in biogas upgrading processes based on the use of hydrogenotrophic methanogens. Hydrogenotrophic methanogens utilize H2 and CO2 in converting them into CH4. In this work, a new approach for CO2 conversion to CH4 and biogas upgrading has been developed based on magnesium ribbon and anaerobic granular sludge under mild aqueous conditions; with CO2 as the sole carbon source, Mg(0) oxidizes and generates H2 that is utilized by hydrogenotrophic methanogens in anaerobic granular sludge. The Mg concentration (2 g/L) contributed to high H2 production during the first day; subsequently H2 gradually decreased/utilised with a simultaneous CH4 increase (days 1–4). Results show that 2 g/L Mg(0) in anaerobic granular sludge can generate 60 % CH4 after 7 days. In this system, the daily regulation of pH to 6 can increase the CH4 to 71.4 % after 7 days, while biogas can be converted to 92 % CH4 after 9 days. At these conditions, Nesquehonite (MgCO3·3H2O) is formed at the outer surface of Mg(0) which prevents the H2 released from Mg(0). However, Nesquehonite (MgCO3·3H2O) can be potentially used as construction materials. Therefore, a new process is reported to convert CO2 to CH4 and Nesquehonite based on Mg(0) and anaerobic granular sludge under mild aqueous conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.