Abstract
Either portland cement or magnesium oxychloride cement was used as binders for concretes that incorporated fine rubber aggregate, ranging from 0 to 25 percent by volume. The concretes were tested for their compressive and split tensile strengths to determine whether the use of a magnesium oxychloride cement along with recycled tire rubbers would improve concrete properties. Failure of the concrete around the rubber particles was attributed to tension failure, leading to weak shear failure of the concrete matrix. Both portland and magnesium oxychloride cement concretes lost 90 percent of their compressive strength with 25 percent rubber by volume. The portland cement concrete retained 20 percent of its tensile strength, and the magnesium oxychloride cement concrete retained 35 percent of its tensile strength. Both compressive and tensile strengths of magnesium oxychloride cement rubber concrete were significantly higher than rubberized portland cement rubber concrete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.