Abstract

Two types of laboratory experiments were used to quantify magnesium isotopic fractionations associated with chemical and thermal (Soret) diffusion in silicate liquids. Chemical diffusion couples juxtaposing a molten natural basalt (SUNY MORB) and a molten natural rhyolite (Lake County Obsidian) were run in a piston cylinder apparatus and used to determine the isotopic fractionation of magnesium as it diffused from molten basalt to molten rhyolite. The thermal diffusion experiments were also run in a piston cylinder apparatus but with a sample made entirely of molten SUNY MORB displaced from the hotspot of the assembly furnace so that the sample would have a temperature difference of about 100–200 °C from one end to the other. The chemical diffusion experiments showed fractionations of 26Mg/ 24Mg by as much as 7‰, which resulted in an estimate for the mass dependence of the self-diffusion coefficients of the magnesium isotopes corresponding to D 26 Mg / D 24 Mg = ( 24 / 26 ) β with β = 0.05. The thermal diffusion experiments showed that a temperature difference of about 100 °C resulted in the MgO, CaO, and FeO components of the basalt becoming slightly enriched by about 1 wt% in the colder end while SiO 2 was enriched by several wt% in the hotter end. The temperature gradient also fractionated the magnesium isotopes. A temperature difference of about 150 °C produced an 8‰ enrichment of 26Mg/ 24Mg at the colder end relative to the hotter end. The magnesium isotopic fractionation as a function of temperature in molten basalt corresponds to 3.6 × 10 −2‰/°C/amu.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call