Abstract

The SAM/SAH riboswitch binds S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) with similar affinities. Mg2+ is generally known to stabilize RNA structures by neutralizing phosphates, but how it contributes to ligand binding and conformational transition is understudied. Here, extensive molecular dynamics simulations (totaling 120 μs) predicted over 10 inner-shell Mg2+ ions in the SAM/SAH riboswitch. Six of them line the two sides of a groove to widen it and thereby pre-organize the riboswitch for ligand entry. They also form outer-shell coordination with the ligands and stabilize an RNA-ligand hydrogen bond, which effectively diminishes the selectivity between SAM and SAH. One Mg2+ ion unique to the apo form maintains the Shine–Dalgarno sequence in an autonomous mode and thereby facilitates its release for ribosome binding. Mg2+ thus plays vital roles in SAM/SAH riboswitch function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.