Abstract

Although Mg2+ contributes to blood pressure regulation partly in terms of vasodilator action, its sympatholytic effect may also play an important role to control blood pressure. Thus, in the present study, we investigated the effect of Mg2+ on sympathetic tone and blood pressure. We studied its actions on the blood pressure response to hydralazine, a direct vasodilator, in conscious spontaneously hypertensive rats (SHRs), and to electrical stimulation in the pithed Sprague-Dawley rat; catecholamine release by peripheral sympathetic nerve endings; and the N-type Ca2+ channels of cultured neural cells. Intravenous Mg2+ infusion (MgSO4: 3x10(-6) mol/kg body weight/min) induced the greater hypotensive response to hydralazine with attenuated reflex tachycardia in SHRs. In pithed rats, Mg2+ infusion significantly attenuated the blood pressure elevation (2+/-2 mm Hg versus 27+/-6 mm Hg, P<0.01) in response to spinal electrical stimulation. In the perfused mesenteric arteries system, norepinephrine release was significantly attenuated (51+/-2%, P<0.01) by high Mg2+ concentration solution (4.8 mmol/L) compared with normal Mg2+ solution (1.2 mmol/L). When we applied the perforated whole-cell patch clamp method to nerve growth factor-treated PC12 cells, Mg2+ blocked voltage-gated Ca2+ currents in a concentration-dependent manner. The majority of the voltage-gated Ca2+ currents were carried through N-type channels, followed by L-type channels. Mg2+ blocked both of these channels. These findings suggest that Mg2+ blocks mainly N-type Ca2+ channels at nerve endings, and thus inhibits norepinephrine release, which decreases blood pressure independent of its direct vasodilating action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.