Abstract

A summit and upper flank eruption occurred at Nyamulagira volcano, Democratic Republic of Congo, from 2–27 January 2010. Eruptions at Nyamulagira during 1996–2010 occurred from eruptive fissures on the upper flanks or within the summit caldera and were distributed along the ~N155E rift zone, whereas the 2011–2012 eruption occurred ~12 km ENE of the summit. 3D numerical modeling of Interferometric Synthetic Aperture Radar (InSAR) geodetic measurements of the co-eruptive deformation in 2010 reveals that magma stored in a shallow (~3.5 km below the summit) reservoir intruded as two subvertical dikes beneath the summit and southeastern flank of the volcano. The northern dike is connected to an ~N45E-trending intra-caldera eruptive fissure, extending to an ~2.5 km maximum depth. The southern dike is connected to an ~N175E-trending flank fissure extending to the depth of the inferred reservoir at ~3.5 km. The inferred reservoir location is coincident with the reservoir that was active during previous eruptions in 1938–1940 and 2006. The volumetric ratio of total emitted magma (intruded in dikes + erupted) to the contraction of the reservoir (rv) is 9.3, consistent with pressure recovery by gas exsolution in the small, shallow modeled magma reservoir. We derive a modified analytical expression for rv, accounting for changes in reservoir volume induced by gas exsolution, as well as eruptive volume. By using the precise magma composition, we estimate a magma compressibility of 1.9–3.2 × 109 Pa−1 and rv of 6.5–10.1. From a normal-stress change analysis, we infer that intrusions in 2010 could have encouraged the ascent of magma from a deeper reservoir along an ~N45E orientation, corresponding to the strike of the rift transfer zone structures and possibly resulting in the 2011–2012 intrusion. The intrusion of magma to greater distances from the summit may be enhanced along the N45E orientation, as it is more favorable to the regional rift extension (compared to the local volcanic rift zone, trending N155E). Repeated dike intrusions beneath Nyamulagira’s SSE flank may encourage intrusions beneath the nearby Nyiragongo volcano.

Highlights

  • It is a challenge to quantitatively predict the position and direction of dike intrusions and resulting eruptive fissures at volcanoes, because they are governed by the interplay between several factors, such as a heterogeneous regional stress field, preexisting discontinuities and heterogeneous and anisotropic properties of rocks

  • The best-fit model describing the 2010 co-eruptive deformation, which is the most likely according to the Akaike information criterion (AIC) values (Table 1), indicates two subvertical dike intrusions and deflation of a magma reservoir

  • The northern dike is connected to an intra-caldera ~N45E-trending eruptive fissure, extending to an ~2.5-km maximum depth

Read more

Summary

Introduction

It is a challenge to quantitatively predict the position and direction of dike intrusions and resulting eruptive fissures at volcanoes, because they are governed by the interplay between several factors, such as a heterogeneous regional stress field, preexisting discontinuities and heterogeneous and anisotropic properties of rocks. Dikes at basaltic volcanoes usually show some regularity in their emplacement pattern, as eruptive fissures and vents tend to align with the direction of the maximum regional principal stress [1]. At Nyamulagira, in the western branch of the East African Rift System (EARS), eruptions seem to occur with spatio-temporal periodicity [7,8,9]. The VVP volcanism is probably controlled by the transfer zone that links the Lake Edward and Lake Kivu segmented extensional basins located along the western branch axis of the EARS [15,16,17,18].

Methods
Findings
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.