Abstract

AbstractThe quantitative estimation of eruptible magma is essential to assess volcanic hazard. In case of high and frequent volcanic activity, different episodes and cycles can be observed and used to gain insights on magma residence and volcano dynamics. Here, by using surface ground deformation for 26 inflation and 14 deflation phases at Mt. Etna, we inferred two partially overlapping magmatic reservoirs located beneath the summit area in the 4-9 km (inflation sources) and in the 3-6 km (deflating sources) depth ranges. Our geodetic models highlight a continuous magma supply of 10.7 ×106 m3/yr that took place in the last two decades. About 28.5% of this magma (i.e. volume loss inferred by geodetic models) contributed to the effusive activity at the surface, while the remaining 71.5% fed the endogenous volumetric growth of the plutonic crystallized mush and promoted the lateral spreading of Mt. Etna. The consistency of this behavior through time sets strong constraints on the eruptible quantity of magma in forecasting activity during a paroxysm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call