Abstract

Background: As high-speed rail and other transportation technologies are moving forward and gaining funding in the United States, the push for MagLev is not receiving the necessary support that would make it a viable alternative in the near future. Major changes in the approach to implementing MagLev could make a better case for it, specifically for carrying freight. One alternative that has been considered in the past is the modification of existing freight railways to support MagLev. For this to be economically feasible and practical, such a solution has to be able to support both conventional freight trains and MagLev freight.   
 Aim: The successful application of Partially Magnetically-Levitated Freight (PMLF) technology achieved by integrating superconducting MagLev technology with current railroad design and operations.
 Methods: A MagLev freight system that is envisioned to use existing rail routes must be designed to be compatible with the existing railway infrastructure. To accomplish this, every component utilized by the railroads must be examined in detail to determine if and how it could be affected by the proposed PMLF. In addition, components that will need to be modified for PMLF operation must undergo a retrofit design and testing process. The design scope must also include an examination of all existing tasks and activities that are being performed by the railroads such as track maintenance and repair. Any procedures that affect or are affected by the addition of PMLF will need to be modified. Finally, superconducting MagLev technology must be optimized and advanced for application to PMLF.   
 Opinions and Discussions: The dual use of railway lines has substantial cost advantages when compared to building new dedicated MagLev freight corridors. In fact it could make the entire proposition very appealing if proven to be technically feasible. However, there are certain limitations and concerns that would cause policy makers to reject such a proposal unless such obstacles can be shown to be temporary and non-critical. Essential rail installations such as switches are presently difficult to modify in a way that would ensure reliable functionality for both MagLev and conventional freight trains, and grade crossings pose safety risks. It is difficult to envision the tremendous leap forward of merging MagLev with existing freight rail lines when much more basic technologies such as positive train control are not even fully implemented. Consequently, it is a challenge to advance MagLev in the United States where new dedicated freight corridors are considered to be cost-prohibitive and dual use railway lines pose uncertainties that railroad companies simply do not want to solve. However, there is one more solution has not been considered that would allow a MagLev freight train to navigate on existing railway infrastructure without disrupting traditional rail utilization. This solution is a partially magnetically-levitated freight train.
 Results: After reviewing the fundamental components, systems and operations of the railways in the United States, it will be feasible and practical to introduce magnetic levitation technology to assist in moving freight on existing rail routes. PMLF trains will be able to take advantage of magnetic levitation on sections where the track has been upgraded to allow its use and much higher speed while still being able to travel on unmodified sections with the same speed as traditional trains.
 Conclusion: Modifying existing freight rail with magnetic “quasi-lift” technology is a much lower cost alternative to building an entirely new MagLev infrastructure. This alternative will provide very important benefits including enhancing safety in the rail industry. In its first phase of implementation, the proposed PMLF system will levitate a significant portion of the weight of the train but still utilize the existing steel rails for traction and guidance. The most evident advantages of this approach include reduced wear on rail and other supporting elements, and a significant reduction in friction and energy use. Locomotives, freight cars and all other components could be made lighter and travel speeds will increase dramatically due to less impact and other effects. Later phases of implementation will focus on magnetic traction and guidance. The acceptance and success of this partially levitated system will eventually lead to fully levitated freight transport technology. Sometimes it is necessary to take smaller steps to achieve the desired future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call