Abstract
In this paper we prove a conjecture stated in an earlier paper [A-L]. The conjecture states that with respect to a rather natural operation, the set of $N$-dimensional magic cubes forms a free monoid for every integer $N>1$. A consequence of this conjecture is a certain identity of formal Dirichlet series. These series and the associated power series are shown to diverge. Generalizations of the underlying ideas are presented. We also prove variants of the main results for magic cubes with remarkable power sum properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.