Abstract
In earlier papers, it has been shown how formal series like those used nowadays to investigate the properties of numerical integrators may be used to construct high-order averaged systems or formal first integrals of Hamiltonian problems. With the new approach the averaged system (or the formal first integral) may be written down immediately in terms of (i) suitable basis functions and (ii) scalar coefficients that are computed via simple recursions. Here we show how the coefficients/basis functions approach may be used advantageously to derive exponentially small error bounds for averaged systems and approximate first integrals.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.