Abstract

Abstract To investigate the direct evidence for a number of physico-chemical processes related to pluton construction and growth, we examine the Buya pluton of West Kunlun in Northwestern China, which emplaced within the 455–460 Ma time frame. Field observations, geochemical data, and thermodynamic modeling show that mafic dikes of the Buya pluton were conduits for magma chamber replenishment during pluton construction. These mafic inputs, and the enclaves that resulted from them, induced compaction of the semi-consolidated, crystal-rich, felsic mushes below them. The accumulation of highly silicic, fine-grained granite at the top of the Buya pluton is the result of episodic melt segregation events from these mushes. This sequence of events may reflect a common process that promotes compositional variation in granite suites. Combined geochemical and Hf- and Nd-isotopic data suggest that parental magmas of the mafic sheet and enclave are similar to sanukitoid, which is potentially consistent with a mantle peridotitic source metasomatized by slab melts. These mafic magmas intruded the lower crust where the original magma was modified by mafic lower-crust melt. Following emplacement at shallow crustal levels of the mafic inputs (~3.7 kbar, ~5.3 km, constrained by amphibole geobarometry), the felsic mush evolved through the extraction of interstitial melts driven by hybridization with episodic inputs of mafic magmas as well as crystal consequent accumulation and fractional crystallization of plagioclase, hornblende, and accessory phases such as allanite, apatite, and zircon. This fractional crystallization process may also provide an explanation for the apparently high Sr/Y features in some silicic high-K, calc-alkaline magmas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call