Abstract

New geochemical data are presented for a suite of tonalites, granodiorites, trondhjemites and granites intrusive into depleted mantle harzburgites of the Oman–UAE ophiolite. A detailed field, petrological and geochemical examination suggests that these ‘mantle granitoids’ are the product of three processes: (a) the mixing of melts derived from both mafic and metasedimentary sources, (b) interaction with the mantle harzburgite host and (c) the fractional crystallisation of plagioclase, hornblende ± accessory phases. Geochemical data are used to characterise the identity of the protolith(s) by first screening the data for those samples which have experienced fractional crystallisation during emplacement. The resultant ‘reduced’ data set has moderately fractionated REE, with small negative Eu anomalies and fractionated primitive mantle-normalised trace element patterns with high concentrations of fluid mobile elements and lower concentrations of HFS elements and with positive peaks for Rb and Pb and negative troughs for Ba, Nb, Sr and Ti. The character of the protolith was quantified using a melting model based upon a MORB-type basalt similar in composition to the Oman Geotimes lavas and a model using the MUQ (MUd from Queensland) global sediment composition (Kamber et al. Geochim Cosmochim Acta 69:1041–1058, 2005) both with an amphibolite/granulite facies mineralogy. The two compositions bracket the mantle granitoid data set with partial melts of the MORB source yielding trace element compositions lower than the granitoids, whereas melts of the MUQ source yield melts with compositions higher than the granitoids. Mixing of the calculated melt compositions indicates that the measured granitoid compositions represent between 10 and 30 % mixing of a metasedimentary melt into the melt of a mafic source. Current petrological, structural and geochronological data suggest a model for the origin of the Oman ophiolite in which it is formed by spreading above a subduction zone. The results of this study support this model in three ways: (a) trace element data show that the granitoids have interacted with the mantle, implying that they originated below the mantle section of the ophiolite and were emplaced into the mantle wedge from below; (b) a most probable setting for the melting of a sediment–basalt mix is in the upper part of a subducting slab; (c) the high temperature/shallow melting of the sediment and basaltic slab mix can only have been driven by the high temperatures of the overlying mantle wedge; this is most likely during subduction initiation. Thus, sediment melting during subduction initiation represents an important means of refertilising what is otherwise highly depleted mantle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call