Abstract
Maf1 is a putative repressor of RNA polymerase (pol) III transcription that is conserved from yeast to humans. Here we show that Maf1 is a common component of multiple signaling pathways in S. cerevesiae that sense changes in the cellular environment and repress pol III transcription. Signaling pathways activated in response to rapamycin-induced nutrient limitation, DNA damage, and secretory pathway defects all require Maf1 in order to affect pol III transcriptional repression. In addition, Maf1 was required for repression of pol III transcription during the normal yeast growth cycle. Biochemical studies identified the initiation factor TFIIIB as a target of Maf1-dependent repression and revealed a defect in TFIIIB-DNA complex assembly under repressing conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.