Abstract
The High-Resolution Imaging Science Experiment (HiRISE) onboard the Mars Reconnaissance Orbiter provides remotely sensed imagery at the highest spatial resolution at 25–50 cm/pixel of the surface of Mars. However, due to the spatial resolution being so high, the total area covered by HiRISE targeted stereo acquisitions is very limited. This results in a lack of the availability of high-resolution digital terrain models (DTMs) which are better than 1 m/pixel. Such high-resolution DTMs have always been considered desirable for the international community of planetary scientists to carry out fine-scale geological analysis of the Martian surface. Recently, new deep learning-based techniques that are able to retrieve DTMs from single optical orbital imagery have been developed and applied to single HiRISE observational data. In this paper, we improve upon a previously developed single-image DTM estimation system called MADNet (1.0). We propose optimisations which we collectively call MADNet 2.0, which is based on a supervised image-to-height estimation network, multi-scale DTM reconstruction, and 3D co-alignment processes. In particular, we employ optimised single-scale inference and multi-scale reconstruction (in MADNet 2.0), instead of multi-scale inference and single-scale reconstruction (in MADNet 1.0), to produce more accurate large-scale topographic retrieval with boosted fine-scale resolution. We demonstrate the improvements of the MADNet 2.0 DTMs produced using HiRISE images, in comparison to the MADNet 1.0 DTMs and the published Planetary Data System (PDS) DTMs over the ExoMars Rosalind Franklin rover’s landing site at Oxia Planum. Qualitative and quantitative assessments suggest the proposed MADNet 2.0 system is capable of producing pixel-scale DTM retrieval at the same spatial resolution (25 cm/pixel) of the input HiRISE images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.