Abstract
The lack of adequate stereo coverage and where available, lengthy processing time, various artefacts, and unsatisfactory quality and complexity of automating the selection of the best set of processing parameters, have long been big barriers for large-area planetary 3D mapping. In this paper, we propose a deep learning-based solution, called MADNet (Multi-scale generative Adversarial u-net with Dense convolutional and up-projection blocks), that avoids or resolves all of the above issues. We demonstrate the wide applicability of this technique with the ExoMars Trace Gas Orbiter Colour and Stereo Surface Imaging System (CaSSIS) 4.6 m/pixel images on Mars. Only a single input image and a coarse global 3D reference are required, without knowing any camera models or imaging parameters, to produce high-quality and high-resolution full-strip Digital Terrain Models (DTMs) in a few seconds. In this paper, we discuss technical details of the MADNet system and provide detailed comparisons and assessments of the results. The resultant MADNet 8 m/pixel CaSSIS DTMs are qualitatively very similar to the 1 m/pixel HiRISE DTMs. The resultant MADNet CaSSIS DTMs display excellent agreement with nested Mars Reconnaissance Orbiter Context Camera (CTX), Mars Express’s High-Resolution Stereo Camera (HRSC), and Mars Orbiter Laser Altimeter (MOLA) DTMs at large-scale, and meanwhile, show fairly good correlation with the High-Resolution Imaging Science Experiment (HiRISE) DTMs for fine-scale details. In addition, we show how MADNet outperforms traditional photogrammetric methods, both on speed and quality, for other datasets like HRSC, CTX, and HiRISE, without any parameter tuning or re-training of the model. We demonstrate the results for Oxia Planum (the landing site of the European Space Agency’s Rosalind Franklin ExoMars rover 2023) and a couple of sites of high scientific interest.
Highlights
The Martian surface shows many distinct morphological features that have been formed by different types of geological processes over its ancient history
In this paper we introduce a different deep network based on multi-scale Generative Adversarial Networks (GANs) and U-Net, solely trained with High-Resolution Imaging Science Experiment (HiRISE) Planetary Data System (PDS)
We establish our MADNet model based on the GAN framework that we previously developed for super-resolution tasks [33]
Summary
The Martian surface shows many distinct morphological features that have been formed by different types of geological processes over its ancient history. These processes, involving volcanism, tectonism, water and aeolian erosion, dust deposition, changes in the polar ice caps, and hypervelocity impact cratering, have shaped the planet on a global and local scale. The resolution of orbital imagery has improved from tens of metres per pixel down to 25 cm/pixel with different swath width These include images from the Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) at 6 m/pixel [2], MRO High Resolution Imaging Science Experiment (HiRISE) at
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.