Abstract
The macroscopic-microscopic method is adapted to atomic clusters deposited on a surface. Analytical relationships for the deformation-dependent liquid drop model (LDM) energies of oblate and prolate semi-spheroidal atomic clusters have been obtained. A superdeformed prolate semi-spheroid is the most stable semi-spheroidal shape within LDM. It is also the shape with maximum degeneracy of quantum states of the semi-spheroidal harmonic oscillator used to compute the shell and pairing corrections. The microscopic corrections as well as total deformation energy show parabolic valley and ridges of the potential energy surfaces in the plane (deformation, number of atoms). The ground state and isomeric state deformation of clusters of various sizes depends on the interplay between the minima of LDM and shell correction energies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.