Abstract

Various noncollinear spin textures and magnetic phases have been predicted in twisted two-dimensional CrI3 due to competing ferromagnetic (FM) and antiferromagnetic (AFM) interlayer exchange from moiré stacking—with potential spintronic applications even when the underlying material possesses a negligible Dzyaloshinskii–Moriya or dipole–dipole interaction. Recent measurements have shown evidence of coexisting FM and AFM layer order in small-twist-angle CrI3 bilayers and double bilayers. Yet, the nature of the magnetic textures remains unresolved and possibilities for their manipulation and electrical readout are unexplored. Here, we use tunneling magnetoresistance to investigate the collective spin states of twisted double-bilayer CrI3 under both out-of-plane and in-plane magnetic fields together with detailed micromagnetic simulations of domain dynamics based on magnetic circular dichroism. Our results capture hysteretic and anisotropic field evolutions of the magnetic states and we further uncover two distinct non-volatile spin textures (out-of-plane and in-plane domains) at ≈1° twist angle, with a different global tunneling resistance that can be switched by magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.