Abstract
A macroscopic frost heave model with more clear parameters was established. Based on a porosity rate frost heave model and segregation potential theory, a porosity rate function was deduced and introduced into the stress-strain relationship. Numerical simulation was conducted and verified by frost heave tests. Results show that the porosity rate within the frozen fringe is proportional to the square of temperature gradient and current porosity, and is also proportional to the exponential function of applied pressure. The relative errors between the calculated and measured results of frost depth and frost heave are within 3% and 15% respectively, demonstrating that the temperature gradient, applied pressure and current porosity are the main influencing factors, while temperature is just the constraint of frozen fringe. The improved model have meaningful and accessible parameters, which can be used in engineering with good accuracy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have