Abstract

AbstractThe ability of six microphysical parameterizations included in the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model to represent various macroscopic cloud characteristics at multiple spatial and temporal resolutions is investigated. In particular, the model prediction skills of cloud occurrence, cloud base height, and cloud cover are assessed. When it is possible, the results are provided separately for low‐, middle‐, and high‐level clouds. The microphysical parameterizations assessed are WRF single‐moment six‐class, Thompson, Milbrandt‐Yau, Morrison, Stony Brook University, and National Severe Storms Laboratory double moment. The evaluated macroscopic cloud properties are determined based on the model cloud fractions. Two cloud fraction approaches, namely, a binary cloud fraction and a continuous cloud fraction, are investigated. Model cloud cover is determined by overlapping the vertically distributed cloud fractions following three different strategies. The evaluation is conducted based on observations gathered with a ceilometer and a sky camera located in Jaén (southern Spain). The results prove that the reliability of the WRF model mostly depends on the considered cloud parameter, cloud level, and spatiotemporal resolution. In our test bed, it is found that WRF model tends to (i) overpredict the occurrence of high‐level clouds irrespectively of the spatial resolution, (ii) underestimate the cloud base height, and (iii) overestimate the cloud cover. Overall, the best cloud estimates are found for finer spatial resolutions (1.3 and 4 km with slight differences between them) and coarser temporal resolutions. The roles of the parameterization choice of the microphysics scheme and the cloud overlapping strategy are, in general, less relevant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.