Abstract
Shapes and patterns observed in internal organs and tissues are reproducibly and robustly produced over a long distance (up to millimeters in length). The most fundamental remaining question is how these long geometries of shape and pattern form arise from the genetic message. Recent studies have demonstrated that extracellular matrix (ECM) critically participates as a structural foundation on which cells can organize and communicate. ECMs may be a key to understanding the underlying mechanisms of long-distance patterning and morphogenesis. However, previous studies in this field mainly focused on the complexes and interaction of cells and ECM. This paper pays particular attention to ECM and demonstrates that collagen, a major ECM component, natively possesses the reproducible and definite patterning ability reaching centimeter-scale length. The macroscopic pattern consists of striped transparent layers. The observation under crossed Nicols demonstrates that the layers consist of alternately arranged polarized and unpolarized parts. Confocal fluorescence microscopy studies revealed that the polarized and unpolarized segments include collagen-rich and -poor regions, respectively. The patterning process was proposed based on the Liesegang banding formation, which are mineral precipitation bands formed in hydrogel matrixes. These findings will give hints to the questions about long-distance cell alignment and provide new clues to artificially control cell placement over micron size in the field of regenerative medicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.