Abstract
Morphological mapping is a fundamental step in studying the processes that shaped an asteroid surface. However, it is challenging and often requires multiple independent assessments by trained experts. Here we present fast methods to detect and characterize meaningful terrains from the topographic roughness: entropy of information, and local mean surface orientation. We apply our techniques to Didymos and Dimorphos, the target asteroids of NASA's Double Asteroid Redirection Test mission—the first attempt to deflect an asteroid. Our methods reliably identify morphological units at multiple scales. The comparative study reveals various terrain types, signatures of processes that transformed Didymos and Dimorphos. Didymos shows the most heterogeneity and morphology that indicate recent resurfacing events. Dimorphos is comparatively rougher than Didymos, which may result from the formation process of the binary pair and past interaction between the two bodies. Our methods can be readily applied to other bodies and data sets.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.