Abstract

The treatment of industrial printing and dyeing wastewater is the focus of the chemical environmental protection industry. Noticeably, the physical adsorption has attracted wide attention due to the selective dye adsorption, simple process, and convenient operation. New aerogels featuring low density and high porosity are regarded as ideal physical adsorption materials for sewage treatment. In this work, high internal phase Pickering emulsions were designed and prepared. The polysaccharide complex originating from sodium octenylsuccinate starch and chitosan serves as the stabilizer, water and hexane act as the external and internal phase, respectively. Acrylic acid was introduced into the external phase to initiate UV polymerization. The high internal phase Pickering emulsions as templates were removed through freeze-drying to produce aerogel materials with macroporous structures, the size of the pores: 43.54 ± 12.75 μm. The scanning electron microscopy (SEM) images show that the pore size of aerogel materials was similar to that of emulsion droplets, verifying the template role of emulsion in the polymerization process. In addition, aerogels possess good mechanical properties and can withstand a pressure of megapascal, exhibiting favorable stability when floating in water for a long time (6 months). Methyl violet, malachite green, methylene blue, and acridine orange in aqueous solution were selected as model dyes to explore the removal process and the mechanism. The adsorption was conformed to be the pseudo-second-order kinetic model and the Freundlich adsorption isotherm, namely, the dye adsorption of the aerogels was the multilayer adsorption on the uneven surface, and the mechanism of the adsorption was related to the π-π interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.