Abstract

Macrophages exposed to hyperoxia in the lung continue to survive for prolonged periods. We previously reported (Nyunoya, T., Powers, L. S., Yarovinsky, T. O., Butler, N. S., Monick, M. M., and Hunninghake, G. W. (2003) J. Biol. Chem. 278, 36099-36106) that hyperoxia induces cell cycle arrest and sustained extracellular signal-related kinase (ERK) activity in macrophages. In this study, we determined the mechanisms of hyperoxia-induced ERK activation and how ERK activity plays a pro-survival role in hyperoxia-exposed cells. Inhibition of ERK activity decreased survival of hyperoxia-exposed macrophages. This was due, at least in part, to down-regulation of the pro-apoptotic Bcl-2 family member, BimEL. In determining the mechanism of ERK activation by hyperoxia, we found that ERK activation was not associated with hyperoxia-induced activation of the upstream ERK kinase mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2. When we examined the ability of whole cell lysates from hyperoxia-exposed cells to dephosphorylate purified phosphorylated ERK, we found decreased ERK-directed phosphatase activity. Two particular ERK-directed phosphatases (protein phosphatase 2A and MAPK phosphatase-3) demonstrated decreased activity in hyperoxia-exposed cells. Moreover, whole cell lysates from normoxia-exposed cells depleted of PP2A or MAPK phosphatase-3 were also less able to dephosphorylate ERK. These data demonstrate that, in hyperoxia-exposed macrophages, sustained activation of ERK due to phosphatase down-regulation permits macrophage survival via effects on the balance between pro- and anti-apoptotic Bcl-2 family proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.