Abstract

Macrophages, the key cells of innate immunity, possess wide phenotypical and functional heterogeneity. In vitro studies showed that microenvironment signals could induce the so-called polarization of macrophages into two phenotypes: classically activated macrophages (M1) or alternatively activated macrophages (M2). Functionally, they are considered as proinflammatory and anti-inflammatory/pro-regenerative, respectively. However, in vivo studies into macrophage states revealed a continuum of phenotypes from M1 to M2 state instead of the clearly distinguished extreme phenotypes. An important role in determining the type of polarization of macrophages is played by energy metabolism, including the activity of oxidative phosphorylation. In this regard, hypoxia and ischemia that affect cellular energetics can modulate macrophage polarization. Here, we overview the data on macrophage polarization during metabolic shift-associated pathologies including ischemia and ischemia/reperfusion in various organs and discuss the role of energy metabolism potentially triggering the macrophage polarization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.