Abstract
Combined exposure to phthalate esters (PAEs) has garnered increasing attention due to potential synergistic effects on human health. This study aimed to develop an in vitro model using human macrophages to evaluate the combined toxicity of PAEs and explore the underlying mechanisms. A high-throughput screening system was engineered by expressing a PPRE-eGFP reporter in THP-1 monocytes to monitor macrophage polarization upon PAEs exposure. Individual PAEs exhibited varied inhibitory effects on M2 macrophage polarization, with mono(2-ethylhexyl) phthalate (MEHP) being the most potent. Isobologram analysis revealed additive interactions when MEHP was combined with other PAEs, resulting in more pronounced suppression of M2 markers compared to individual compounds. Mechanistic studies suggested PAEs may exert effects by modulating PPARγ activity to inhibit M2 polarization. Notably, an equimolar mixture of six PAEs showed additive inhibition of M2 markers. In vivo experiments corroborated the combined hepatotoxic effects, with mice exposed to a PAEs mixture exhibiting reduced liver weight, dyslipidemia, and decreased hepatic M2 macrophages compared to DEHP alone. Transcriptome analysis highlighted disruptions in PPAR signaling, and distinct pathway alterations on cholesterol metabolism in the mixture group. Collectively, these findings underscore the importance of evaluating mixture effects and provide a novel approach for hazard assessment of combined PAEs exposure with implications for environmental health risk assessment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have