Abstract

The abnormal aggregation of β-amyloid protein (Aβ) is a major contributor to Alzheimer's disease (AD). Cu2+ homeostasis imbalance can lead to the aggregation of Aβ, resulting in cytotoxic oligomers and fibrous aggregates, causing neuroinflammation and nerve cell damage, ultimately leading to AD. In this study, we synthesized nitrogen-doped carbon quantum dot (CQD), and designed a macrophage membrane (RAW-M) encapsulated CQD nanosystem for the first time. The abundant nitrogen-containing groups on the surface of CQD effectively capture excess Cu2+ and inhibit rapid Aβ aggregation. Additionally, the good photothermal properties of CQD dissolve the formed fiber precipitates under near-infrared light (NIR). In vitro and in vivo studies showed that the nanosystem significantly improved BBB permeability under laser irradiation, enhancing its ability to cross the BBB and overcome traditional anti-AD drug limitations. In vivo investigations conducted on APP/PS1 mice indicate that the nanosystem strongly reduced Aβ deposition, mitigated neuroinflammation, and ameliorates deficits in learning and memory. Overall, our nanocarrier approach adjusts metal ion homeostasis, inhibits abnormal Aβ aggregation, and uses excellent photothermal properties to depolymerize mature Aβ fibrils to protect cells from Aβ neurotoxicity, providing an effective strategy for Aβ-targeted treatment of AD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.