Abstract
Cryo-electron tomography, combined with subtomogram averaging (STA), can reveal three-dimensional (3D) macromolecule structures in the near-native state from cells and other biological samples. In STA, to get a high-resolution 3D view of macromolecule structures, diverse macromolecules captured by the cellular tomograms need to be accurately classified. However, due to the poor signal-to-noise-ratio (SNR) and severe ray artifacts in the tomogram, it remains a major challenge to classify macromolecules with high accuracy. In this paper, we propose a new convolutional neural network, named 3D-Dilated-DenseNet, to improve the performance of macromolecule classification. In 3D-Dilated-DenseNet, there are two key strategies to guarantee macromolecule classification accuracy: 1) Using dense connections to enhance feature map utilization (corresponding to the baseline 3D-C-DenseNet); 2) Adopting dilated convolution to enrich multi-level information in feature maps. We tested 3D-Dilated-DenseNet and 3D-C-DenseNet both on synthetic data and experimental data. The results show that, on synthetic data, compared with the state-of-the-art method in the SHREC contest (SHREC-CNN), both 3D-C-DenseNet and 3D-Dilated-DenseNet outperform SHREC-CNN. In particular, 3D-Dilated-DenseNet improves 0.393 of F1 metric on tiny-size macromolecules and 0.213 on small-size macromolecules. On experimental data, compared with 3D-C-DenseNet, 3D-Dilated-DenseNet can increase classification performance by 2.1 percent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM transactions on computational biology and bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.